Cyclization/Hydrosilylation of Functionalized Diynes Catalyzed by a Cationic Platinum Phenanthroline Complex

James Madine, Xiang Wang, and Ross A. Widenhoefer*

Duke University

P. M. Gross Chemical Laboratories

Durham, NC 27708–0346

Supporting Information

Experimental procedures and analytical and spectroscopic data for new compounds (12 pages).

Experimental

General Methods. All reactions were performed under an atmosphere of nitrogen employing standard Schlenk techniques. NMR spectra were obtained at 300 MHz for ¹H and at 75 MHz for ¹³C in CDCl₃ unless otherwise specified. IR spectra were obtained on a Bomen MB-100 FT IR spectrometer. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatograph equipped with a 25 m polydimethylsiloxane capillary column. Elemental analyses were performed by E+R Microanalytical Laboratories (Parsippany, NJ). CH₂Cl₂ and 1,2-dichloroethane (DCE) were distilled from CaH₂ under nitrogen. Toluene (Aldrich, anhydrous) and silanes (Aldrich) were used as received. The synthesis of dimethyl dipropargylmalonate (1), 4,4-bis(hydroxymethyl)-1,6-heptadiyne, and 2,2-dimethyl-5,5-di-prop-2-ynyl-[1,3] dioxane (Table 1, entry 7) have been reported.¹

Divnes

4,4-Bis(trimethylacetoxymethyl)-1,6-heptadiyne (Table 1, entry 4). A solution of 4,4-bis(hydroxymethyl)-1,6-heptadiyne (1.15 g, 7.6 mmol), trimethylacetylchloride (2.68 g, 22 mmol, NEt₃ (2.2 g, 22 mmol), and DMAP (125 mg, 1 mmol) in CH₂Cl₂ (10 mL) was stirred at room temperature for 12 h. Aqueous work-up and chromatography (SiO₂; EtOAc-hexane = 24:1) gave 4,4-bis(trimethylacetoxymethyl)-1,6-heptadiyne (1.05 g, 41%) as a colorless oil. 1 H NMR: δ 4.07 (s, 4 H), 2.40 (d, J = 2.7 Hz, 4 H), 2.02 (t, J = 2.7 Hz, 2 H), 1.19 (s, 18 H). 13 C{ 1 H} NMR: δ 177.8, 78.9, 71.8, 40.6, 39.0, 27.2, 22.4. Anal. calcd. (found) for C₁₉H₂₈O₄: C, 71.22 (71.29); H, 8.81 (8.99).

4,4-Dibenzyloxymethyl-1,6-heptadiyne (**Table 1, entry 5**). A solution of 4,4-bis(hydroxymethyl)-1,6-heptadiyne (1.25 g, 8.2 mmol) in THF (5 mL) and benzyl bromide (4.0 g, 23 mmol) were added sequentially to a suspension of NaH (60% in oil, 1.0 g, 25 mmol) in THF (15 mL) and the resulting solution was stirred at room temperature for 12 h. Aqueous work up and chromatography (SiO₂; EtOAc–hexane = 24:1) gave 4,4-dibenzyloxymethyl-hepta-1,6-diyne (1.1 g, 38%) as a colorless oil. ¹H NMR: δ 7.30 (s, 10 H), 4.51 (s, 4 H), 3.50

(s, 4 H), 2.42 (d, J = 2.7 Hz, 4 H), 1.94 (t, J = 2.7 Hz, 2 H). $^{13}C\{^{1}H\}$ NMR: δ 138.7, 128.4, 127.7, 127.6, 80.9, 73.5, 71.3, 70.8, 42.2, 22.2. Anal. calcd. (found) for $C_{23}H_{24}O_{2}$: C, 83.10 (83.16); H, 7.28 (7.23).

4,4-Bis-(t-butyldimethylsilyloxymethyl)-1,6-heptadiyne (Table 1, entry 6). A solution of TBDMSCl (2.2 g, 14.7 mmol) in CH₂Cl₂ (10 mL) was added slowly to a solution of 4,4-bis(hydroxymethyl)-1,6-heptadiyne (1.0 g, 6.6 mmol) and triethylamine (1.6 g, 15.8 mmol) in CH₂Cl₂ (20 mL) and the resulting solution was stirred at room temperature for 4 h. Aqueous work up and chromatography (SiO₂; hexane–ether = $50:1 \rightarrow 5:1$) gave 4-hydroxymethyl-(t-butyldimethylsilyloxymethyl)-1,6-heptadiyne (S1) (1.7 g, 6.4 mmol, 97%) as a colorless oil. S1 (1.0 g, 3.8 mmol) and a solution of TBDMSCl (1.0 g, 6.7 mmol) in THF (5 mL) were added sequentially to a slurry of NaH (0.20 g, 5.0 mmol) in THF (15 mL) and the resulting suspension was refluxed for 10 h. Aqueous work up and chromatography (SiO₂; hexane–ether = 50:1) gave 4,4-bis-(t-butyldimethylsilyloxymethyl)-1,6-heptadiyne (0.81 g, 2.13 mmol, 57%) as a colorless oil.

For S1: ¹H NMR (400 MHz): δ 3.69 (d, J = 6.0 Hz, 2 H), 3.67 (s, 2 H), 2.58 (t, J = 6.0 Hz, 1 H), 2.34 (dd, J = 2.8, 4.8 Hz, 4 H), 2.01 (t, J = 2.8 Hz, 2 H), 0.90 (br s, 9 H), 0.08 (br s, 6 H). ¹³C{¹H} NMR (100 MHz): δ 80.6, 71.1, 67.2, 67.0, 42.2, 26.0, 25.8, 21.7, 18.3, -5.5.

For 4,4-Bis-(*t*-butyldimethylsilyloxymethyl)-1,6-heptadiyne: 1 H NMR (400 MHz): δ 3.53 (s, 3 H), 2.28 (d, J = 2.8 Hz, 4 H), 1.95 (t, J = 2.8 Hz, 2 H), 0.89 (s, 18 H), 0.05 (s, 12 H). 13 C{ 1 H} NMR (100 MHz): δ 81.3, 71.3, 63.4, 43.5, 26.0, 21.1, 18.5, -5.4. IR (neat, cm⁻¹): 3312, 2954, 2929, 2857, 1459, 1463, 1255. Anal. calcd (found) for C₂₁H₄₀O₂Si₂: H, 10.69 (10.84); C, 66.25 (66.40).

4-Carbomethoxy-4-phenyl-1,6-heptadiyne (**Table 1, entry 8**). Methyl phenyl acetate (2.0 g, 13.3 mmol) and propargyl bromide (6.0 g, 40.3 mmol) were added sequentially to a slurry of NaH (1.2 g, 30 mmol) in THF (50 mL) at 0 °C and the resulting suspension was stirred at room temperature for 60 h. Aqueous work up and chromatography (SiO₂; hexanes–ether = 10:1) gave 4-carbomethoxy-4-phenyl-1,6-heptadiyne (1.5 g, 50%) as a white

solid. ${}^{1}H$ NMR: δ 7.24-7.37 (m, 5 H), 3.69 (s, 3 H), 3.12 (dq, J = 2.6, 7.0 Hz, 4 H), 1.97 (d, J = 2.6 Hz, 2 H). ${}^{13}C\{{}^{1}H\}$ NMR: δ 172.8, 138.5, 127.8, 127.0, 125.3, 79.2, 70.7, 52.4, 52.0, 24.8. IR (neat, cm $^{-1}$): 3296, 3286, 1729, 1290, 1218. Anal. calcd (found) for $C_{15}H_{14}O_{2}$: H, 6.24 (6.29); C, 79.62 (79.39).

1-Carbomethoxy-1-methanesulfonyl-1,6-heptadiyne (**Table 1, entry 9).** Methyl methanesulfonyl acetate (2.02 g, 13.3 mmol) and propargyl bromide (6.0 g, 40.3 mmol) were added sequentially to a slurry of NaH (1.2 g, 30 mmol) in THF (50 mL) at 0 °C and the resulting suspension was stirred at room temperature for 3 h. Aqueous work up and chromatography (SiO₂; hexanes–EtOAc = 4:1 \rightarrow 2:1) gave 1-carbomethoxy-1-methanesulfonyl-1,6-heptadiyne (2.0 g, 66%) as a slightly yellowish solid. ¹H NMR (400 MHz): δ 3.88 (s, 3 H), 3.20 (d, J = 2.0 Hz, 4 H), 3.13 (s, 3 H), 2.18 (t, J = 2.4 Hz, 2 H). 13 C{ 1 H} NMR: δ 166.9, 77.2, 73.2, 72.2, 54.2, 39.5, 21.5. IR (neat, cm $^{-1}$): 3297, 3282, 3012, 2963, 2932, 1780, 1438, 1328, 1301, 1217, 1225. Anal. calcd (found) for C₁₀H₁₂O₄S: H, 5.30 (5.43); C, 52.62 (52.64).

4-Carbomethoxy-4-dimethylcarbamoyl-1,6-heptadiyne (Table 1, entry 10). Malonamic acid methyl ester (2.0 g, 17.1 mmol) and propargyl bromide (7.6 g, 51.0 mmol) were added sequentially to a slurry of NaH (1.5 g, 37.5 mmol) in THF (50 mL) at 0 °C and the resulting suspension was stirred at room temperature for 1.2 h. Aqueous work up and chromatography (SiO₂; hexanes then acetone) gave 4-carbomethoxy-4-carbamoyl-1,6-heptadiyne (S2) (1.5 g, 6.7 mmol, 50%) as a white solid. A solution of S2 (1.0 g, 5.2 mmol) in THF (5 mL) and methyl iodide (3 mL, 47 mmol) were added sequentially to a slurry of NaH (0.6 g, 15 mmol) in THF (15 mL) and the resulting suspension was stirred at room temperature for 30 minutes. Aqueous work up and chromatography (hexane–EtOAc = $4:1 \rightarrow 2:1$) gave 4-carbomethoxy-4-dimethylcarbamoyl-1,6-heptadiyne (260 mg, 23%) as a white solid.

For S2: ¹H NMR (400 MHz, DMSO): δ 3.79 (s, 3 H), 3.03 (d, J = 2.8 Hz, 4 H), 2.95 (s, 6 H), 2.04 (t, J = 2.4 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, DMSO): δ 171.6, 167.3, 78.7, 72.1, 55.7, 533, 37.3, 24.1.

For 4-carbomethoxy-4-dimethylcarbamoyl-1,6-heptadiyne: 1 H NMR (400 MHz): δ 3.79 (s, 3 H), 3.03 (d, J = 2.8 Hz, 4 H), 2.95 (s, 6 H), 2.04 (t, J = 2.4 Hz, 2 H). 13 C{ 1 H} NMR (100 MHz): δ 171.6, 78.7, 72.1, 55.7, 53.3, 37.3, 24.1. IR (neat, cm $^{-1}$): 3283, 3237, 1735, 1653, 1638, 1302. Anal. calcd (found) for $C_{12}H_{15}NO_3$: H, 6.83 (6.73); C 65.14 (65.27); N 6.33 (6.32)

4,4-Dicarbomethoxy-3-methyl-1,6-heptadiyne (**Table 1, entry 11**). Dimethyl propargylmalonate (2.0 g, 11.8 mmol) and 3-bromo-3-methyl-1-butyne (1.9 g, 14.3 mmol) were added sequentially to a slurry of NaH (0.8 g, 20.0 mmol) in THF (30 mL) at 0 °C and the resulting suspension was refluxed for 6 h. Aqueous work up and chromatography (SiO₂; hexane–ether = $50:1 \rightarrow 12:1$) gave 4,4-dicarbomethoxy-3-methyl-1,6-heptadiyne (360 mg, 1.62 mmol, 14%) as a colorless oil. ¹H NMR (400 MHz): δ 3.71 (s, 3 H), 3.46 (dq, J = 2.8, 7.2 Hz, 1 H), 3.11 (dd, J = 2.8, 7.2 Hz, 1 H), 2.89 (dd, J = 2.8, 7.2 Hz, 1 H), 2.15 (d, J = 2.8 Hz, 1 H), 2.04 (t, J = 2.8 Hz, 1 H), 1.38 (d, J = 7.2 Hz, 3 H). ¹³C{¹H} NMR (100 MHz): δ 169.4, 169.1, 83.9, 79.1, 71.8, 71.5, 59.9, 53.0, 52.8, 30.3, 23.7, 17.5. IR (neat, cm⁻¹): 3289, 2954, 1738, 1731, 1434, 1230. Anal. calcd (found) for C₁₂H₁₄O₄: H, 6.35 (6.35); C, 64.85 (64.63).

4,4,5,5-Tetracarboethoxy-1,7-octadiyne (**Table 1, entry 12**). A suspension of 1,1,2,2-tetracarboethoxyethane (10 g, 31 mmol), NaH (60% in oil, 3.7 g, 92 mmol), and propargyl bromide (80% by weight in toluene, 25 g, 170 mmol) in THF (100 mL) was refluxed overnight. Aqueous work up and chromatography (SiO₂; EtOAc–hexane = 3:1) gave 4,4,5,5-tetracarboethoxy-1,7-octadiyne (9.52 g, 77%) as a tan solid. ¹H NMR: δ 4.17 (m, 8 H), 3.06 (d, J = 2.6 Hz, 4 H), 1.97 (t, J = 2.6 Hz, 2 H), 1.22 (t, J = 7.2 Hz, 12 H). ¹³C{¹H} NMR: δ 168.4, 79.9, 71.1, 62.2, 61.5, 22.7, 13.9. Anal. calcd. (found) for C₂₀H₂₆O₈: C, 60.90 (61.23); H, 6.64 (6.80).

1,2-Dialkylidenecycloalkanes

General Procedure for Cyclization/Hydrosilylation. Toluene (20 mL) was added to a mixture of (phen)Pt(Me)₂ (9 mg, 0.023 mmol), B(C_6F_5)₃ (12 mg, 0.023 mmol), and divne (0.5 mmol) at 0 °C. The resulting orange solution was heated at 110 °C for 1-3 h, cooled to

room temperature and concentrated under vacuum. Evaporation of solvent and chromatography of the residue on neutral grade III alumina gave the 1,2-dialkylidenecyclopentane as a colorless oil or solid.

(*Z*)-1,1-Dicarbomethoxy-3-methylene-4-(triethylsilylmethylene) cyclopentane (*Z*-2). 1 H NMR: δ 5.41 (t, J = 1.9 Hz, 1 H), 5.31 (t, J = 2.0 Hz, 1 H), 5.00 (t, J = 1.6 Hz, 1 H), 3.70 (s, 6 H), 3.07 (d, J = 1.87 Hz, 2 H), 3.03 (t, J = 1.9 Hz, 2 H), 0.89 (t, J = 7.9 Hz, 9 H), 0.64 (q, J = 7.9 Hz, 6 H). IR (neat, cm⁻¹): 2954, 2912, 2876, 1754, 1745, 1738, 1731, 1681, 1651, 1455, 1434, 1257, 1201, 1164, 1073, 1015. 13 C{ 1 H} NMR: δ 171.1, 153.4, 146.0, 119.9, 109.2, 56.3, 52.1, 44.8, 41.2, 6.9, 3.5. Anal. calcd. (found) for C $_{17}$ H $_{28}$ SiO $_{4}$: C, 62.93 (62.79); H, 8.70 (8.68).

(*E*)-1,1-Dicarbomethoxy-3-methylene-4-(triethylsilylmethylene) cyclopentane (*E*-2). 1 H NMR: δ 5.97 (t, J = 2.4 Hz, 1 H), 5.40 (t, J = 2.4 Hz, 1 H), 4.94 (t, J = 2.0 Hz, 1 H), 3.73 (s, 6 H), 3.04 (d, J = 2.2 Hz, 2 H), 3.03 (t, J = 2.1 Hz, 2 H), 0.95 (t, J = 8.0 Hz, 9 H), 0.65 (q, J = 8.0 Hz, 6 H). 13 C{ 1 H} NMR: δ 171.9, 162.7, 145.9, 116.6, 105.7, 57.9, 53.0, 41.5, 40.7, 7.7, 4.3. MS calcd. (found) for C_{17} H₂₉SiO₄ (MH⁺): 325 (325).

Figure S1. 1 H NMR NOE analysis of E-2 and Z-2.

(*Z*)-1,1-Dicarbomethoxy-3-methylene-4-(dimethyl-*t*-butylsilylmethylene)

cyclopentane (**Table 1, entry 1**). ¹H NMR: δ 5.51 (br s, 1 H), 5.31 (t, J = 1.9 Hz, 1 H), 5.02 (s, 1 H), 3.70 (s, 6 H), 3.08 (d, J = 1.8 Hz, 2 H), 3.02 (br s, 1 H), 0.87 (s, 9 H), 0.08 (s, 6 H).

¹³C{¹H} NMR: δ 171.1, 153.3, 144.2, 120.4, 110.1, 56.1, 52.1, 44.7, 41.4, 25.6, 16.4, -5.9. HRMS(EI) calcd. (found) for C₁₇H₂₉SiO₄ (MH+): 325.1835 (523.1843).

(*Z*)-1,1-Dicarbomethoxy-3-methylene-4-(dimethylbenzylsilylmethylene) cyclopentane (Table 1, entry 2). 1 H NMR: δ 7.25 - 6.95 (m, 5 H), 5.49 (s, 1 H), 5.29 (s, 1 H), 5.08 (s, 1 H), 3.71 (s, 6 H), 3.06 (m, 4 H), 2.20 (s, 2 H), 0.90 (s, 6 H). 13 C{ 1 H} NMR: δ 171.9, 154.2, 145.3, 140.2, 128.5, 128.3, 124.2, 122.2, 111.2, 57.1, 53.0, 45.5, 42.3, 26.0, -2.1. Anal. calcd. (found) for C₂₀H₂₆SiO₄: C, 67.01 (67.12); H, 7.31 (7.10).

(*Z*)-1,1-Dicarbomethoxy-3-methylene-4-(tributylsilylmethylene) cyclopentane (Table 1, entry 3). 1 H NMR: δ 5.42 (t, J = 1.8 Hz, 1 H), 5.30 (t, J = 2.2 Hz, 1 H), 5.00 (t, J = 2.0 Hz, 1 H), 3.70 (s, 6 H), 3.06 (d, J = 1.8 Hz, 2 H), 3.03 (t, J = 2.1 Hz, 2 H), 1.35 - 1.15 (m, 12 H), 0.85 (t, J = 6.8 Hz, 9 H), 0.61 (m, 6 H). 13 C{ 1 H} NMR: δ 172.0, 153.8, 145.5, 121.8, 110.2, 57.2, 52.9, 45.8, 42.2, 26.9, 26.5, 14.0, 13.1. Anal. calcd. (found) for C₂₃H₄₀SiO₄: C, 67.60 (67.24); H, 9.87 (9.73).

(Z)-1,1-Bis(trimethylacetoxymethyl)-3-methylene-4-

(triethylsilylmethylene)cyclopentane (Table 1, entry 4). 1 H NMR: δ 5.38 (s, 1 H), 5.32 (br s, 1 H), 4.97 (br s, 1 H), 3.94 (s, 4 H), 2.45 (d, J = 1.7 Hz, 2 H), 2.40 (br s, 2 H), 1.18 (s, 18 H), 0.90 (t, J = 7.9 Hz, 9 H), 0.63 (q, J = 7.9 Hz, 6 H). 13 C{ 1 H} NMR: δ 178.5, 155.9, 146.7, 121.1, 110.6, 66.5, 44.4, 42.9, 40.6, 39.2, 27.4, 7.9, 4.5. Anal. calcd. (found) for C₂₅H₄₄SiO₄: C, 68.76 (69.17); H, 10.16 (10.39).

(Z)-4,4-Dibenzyloxymethyl-1,6-heptadiyne-3-methylene-4-(triethylsilyl

methylene)cyclopentane (Table 1, entry 5). ¹H NMR: δ 7.29 (m, 10 H), 5.33 (t, J = 1.7 Hz, 1 H), 5.27 (br s, 1 H), 4.91 (br s, 1 H), 4.49 (s, 4 H), 3.37 (s, 4 H), 2.44 (br s, 1 H), 2.44 (d, J = 1.9 Hz, 2 H), 2.40 (t, J = 1.7 Hz, 2 H), 0.90 (t, J = 7.83 Hz, 9 H), 0.62 (q, J = 7.8 Hz, 6 H). ¹³C{¹H} NMR: δ 157.9, 148.2, 139.1, 128.5, 127.6, 119.7, 109.7, 73.4, 73.2, 44.9, 44.5, 40.7, 8.0, 4.6. Anal. calcd. (found) for C₂₉H₄₀SiO₂: C, 77.62 (77.35); H, 8.99 (8.84).

(Z)-(8,8-Dimethyl-3-methylene-7,9-dioxa-spiro[4.5]dec-2-ylidenemethyl)triethylsilane (Table 1, entry 7). 1 H NMR (400 MHz): δ 5.38 (s, 1 H), 5.31 (s, 1 H), 4.96 (s, 1 H), 3.60 (s, 4 H), 2.41 (d, J = 1.6 Hz, 2 H), 2.39 (s, 2 H), 1.40 (s, 6 H), 0.90 (t, J = 8.0 Hz, 9 H), 0.60-0.66 (m, 6 H). 13 C{ 1 H} NMR (100 MHz): δ 156.6, 147.2, 120.6, 110.2, 98.0, 68.4, 45.6, 41.5, 38.2, 24.2, 23.8, 7.8, 4.5. IR (neat, cm $^{-1}$): 2990, 2950, 2871, 1454. Anal. calcd (found) for C₁₈H₃₂O₂Si: H, 10.45 (10.42); C, 70.07 (69.83).

(Z)-1-Carbomethoxy-3-methylene-1-phenyl-4-(tributylsilylmethylene)-

cyclopentane (**Table 1, entry 8**). ¹H NMR: δ 7.20-7.34 (m, 5 H), 5.51 (s, 1 H), 5.34 (s, 1 H), 5.05 (s, 1 H), 3.60 (s, 3 H), 3.45 (dd, J = 1.3, 15.2 Hz, 1 H), 3.42 (td, J = 1.6, 13.9 Hz, 1 H), 1.20-1.33 (m, 12 H), 0.86 (t, J = 7.0 Hz, 9 H), 0.60-0.64 (m, 6 H). ¹³C{¹H} NMR: δ 174.7, 154.1, 145.1, 141.5, 127.7, 126.3, 125.9, 120.5, 109.0, 54.1, 51.7, 47.8, 44.1, 26.0, 25.6, 25.5, 13.2, 12.2. IR (cm⁻¹, neat): 3030, 2954, 2920, 1733, 1463, 1446. Anal. calcd (found) for $C_{27}H_{42}O_2Si$: H, 9.92 (10.32); C, 76.60 (76.21).

(*Z*)-1-Carbomethoxy-1-methanesulfonyl-3-methylene-4-(triethylsilylmethylene)-cyclopentane (Table 1, entry 9). 1 H NMR (400 MHz): δ 5.49 (t, J = 2.0 Hz, 1 H), 5.38 (t, J = 2.0 Hz, 1 H), 3.79 (s, 2 H), 3.24 (dq, J = 2.8, 16.0 Hz, 2 H), 3.22 (d, J = 2.4 Hz, 2 H), 3.02 (s, 3 H), 0.90 (t, J = 6.8 Hz, 9 H), 0.61-0.67 (m, 6 H). 13 C{ 1 H} NMR (100 MHz): δ 169.3, 152.0, 143.7, 122.6, 111.2, 73.8, 53.9, 42.6, 38.7, 38.4, 7.7, 4.3. IR (neat, cm $^{-1}$). Anal. calcd (found) for C₁₆H₂₈O₄SSi: H, 8.19 (8.45); C, 55.78 (56.01).

(Z)-1-Carbomethoxy-1-dimethylcarbamoyl-3-methylene-4-

(triethylsilylmethylene)-cyclopentane (Table 1, entry 10). 1 H NMR (400 MHz): δ 5.35 (s, 1 H), 5.26 (t, J = 2.0 Hz, 1 H), 4.95 (s, 1 H), 3.69 (s, 3 H), 3.15 (td, J = 2.0, 15.6 Hz, 1 H), 3.09 (dq, J = 2.0, 16.8 Hz, 2 H), 2.94 (d, J = 16.4 Hz, 2 H), 2.92 (s, 3H), 2.82 (s, 3 H), 0.88 (t, J = 8.0 Hz, 9 H), 0.58-0.64 (m, 6 H). 13 C{ 1 H} NMR (100 MHz): δ 174.1, 170.1, 154.9, 146.1, 119.9, 109.6, 56.1, 52.9, 46.0, 43.0, 37.0, 7.8, 4.7, 4.4. IR (neat, cm $^{-1}$). Anal. calcd (found) for C₁₈H₃₁NO₃Si: H, 9.26 (9.58); C, 64.05 (63.94); N, 4.15 (4.38).

(Z)-1,1-Dicarbomethoxy-2-methyl-3-methylene-4-

(triethylsilylmethylene)cyclopentane (Table 1, entry 11). The sample employed for spectroscopy consisted of a 1:1 mixture of E/Z isomers. ¹H NMR: δ 5.40 (t, J = 2.0 Hz, 1 H),

5.35 (d, J = 2.4 Hz, 1 H), 5.34 (d, J = 2.0 Hz, 1 H), 5.33 (d, J = 2.0 Hz, 1 H), 4.99 (t, J = 2.4 Hz, 1 H), 4.93 (d, J = 2.0 Hz, 1 H), 3.71 (s, 3 H), 3.70 (s, 3 H), 3.68 (s, 3 H), 3.67 (s, 3 H),3.30 - 3.15 (m, 4 H), 2.85 - 2.75 (m, 2 H), 1.11 (d, J = 7.2 Hz, 3 H), 1.07 (d, J = 7.2 Hz, 3 H), 0.91 (t, J = 7.6 Hz, 9 H), 0.90 (t, J = 7.6 Hz, 9 H), 0.68 - 0.62 (m, 12 H). 13 C{ 1 H} NMR: δ 172.1, 170.8, 160.1, 154.1, 151.3, 145.3, 120.2, 118.8, 109.9, 108.8, 61.2, 60.9, 52.8, 52.3, 48.4, 45.7, 43.6, 39.7, 16.4, 15.7, 7.76, 4.44. IR (neat, cm $^{-1}$). Anal. calcd (found) for C₁₈H₃₀O₄Si: H, 8.93 (8.90); C, 63.87 (63.82).

Chart S1. Potentialtial isomers formed in the cyclization/hydrosilylation of 4,4-dicarbomethoxy-3-methyl-1,6-heptadiyne.

Assignment of the isomerics as mixture of E/Z stereoisomers (*Z*-**S3** and *E*-**S3**, Chart S1) rather than a mixture of the 2-methyl/3-methyl regioisomers (*Z*-**S3** and *Z*-**S4**, Chart S1) was based on two spectroscopic features. First, the 1 H NMR spectrum of a 1:1 mixture of the isomers displayed four one proton doublets and two one proton triplets in the olefinic region. This pattern is consistent with a 1:1 mixture of *Z*-**S3** and *E*-**S3**, but is inconsistent with a 1:1 mixture of *Z*-**S3** and *Z*-**S4**, which should display three one proton doublets and three one proton triplets in the olefinic region. Secondly, the 13 C NMR spectrum of the isomeric mixture displayed an olefinic resonance at δ 160.1. Of all the 1,2-dialkylidenecyclopentanes synthesized in the study, the only other example of an olefinic peak with a chemical shift δ >160 was in the case of *E*-**2** (δ 162.7).

(*Z*)-1,1,2,2-Tetracarboethoxy-4-methylene-5-(triethylsilylmethylene) cyclohexane (Table 1, entry 12). 1 H NMR: δ 5.35 (s, 1 H), 5.14 (t, J = 2.1 Hz, 1 H), 4.94 (t, J = 2.2 Hz, 1 H), 4.31 (q, J = 7.0 Hz, 4 H), 4.28 (q, J = 7.0 Hz, 4 H), 3.23 (br s, 2 H), 3.09 (br s, 2 H), 1.37 (t, J = 7.0 Hz, 6 H), 1.36 (t, J = 7.0 Hz, 6 H), 1.01 (t, J = 7.7 Hz, 9 H), 0.68 (q, J = 7.7 Hz, 6 H). 13 C{ 1 H} NMR: δ 168.6, 168.5, 151.7, 143.1, 124.0, 113.0, 60.8, 60.7, 60.6, 58.4, 42.7, 38.1, 13.0, 6.7, 4.0. Anal. calcd. (found) for C₂₆H₄₂SiO₈: C, 61.15 (61.05); H, 8.29 (8.37).

Diels-Alder Adducts

Adduct of Diene 2 and N-Phenylmaleimide (3). A solution of 2 (19:1 mixture of E/Z isomers) (88 mg, 0.27 mmol) and N-phenylmaleimide (50 mg, 0.29 mmol) in toluene (4 mL) and stirred at 80 for 20 h. Toluene was evaporated under vacuum and the residue was chromatographed (SiO₂; hexane–EtOAc = 10:1 \rightarrow 3:1) to give 3 (138 mg, 102%) viscous colorless oil. ¹H NMR (400 MHz): δ 7.39 (t, J = 7.6 Hz, 2 H), 7.31 (t, J = 10.8 Hz, 1 H), 7.19 (d, J = 7.6 Hz, 2 H), 3.68 (s, 3 H), 3.60 (s, 3 H), 3.28 (t, J = 8.4 Hz, 1 H), 3.17 (d, J = 8.4 Hz, 1 H), 3.02 (bd, J = 15.6 Hz, 1 H), 2.97 (bd, J = 16.4 Hz, 1 H), 2.93 (bd, J = 20.0 Hz, 1 H), 2.89 (bd, J = 11.6 Hz, 1 H), 2.85 (bd, J = 15.2 Hz, 1 H), 2.59 (bd, J = 16.8 Hz, 1 H), 2.54 (s, 1 H), 2.30-2.34 (m, 1 H), 0.97 (t, J = 7.6 Hz, 9 H), 0.61 (q, J = 7.6 Hz, 6 H). ¹³C{¹H} NMR (100 MHz): δ 180.0, 179.4, 172.6, 172.3, 134.3, 132.4, 129.2, 128.7, 127.8, 126.7, 58.2, 53.0, 44.8, 44.0, 40.8, 40.1, 25.0, 24.8, 7.6, 3.5. IR (neat, cm⁻¹): 2953, 2911, 2876, 1737, 1730, 1712, 1598, 1257, 1197. HRMS cacld (found) for C₂₇H₃₅NO₆Si (M⁺): 497.2234 (497.2220).

Adduct of 3-Methylene-4-(triethylsilylmethylene)-1,1-bis-(*t*-butyldimethylsilyloxymethyl)cyclopentane (S6) with 4-Phenyl-[1,2,4]triazole-3,5-dione (S5) (Table 1, entry 6). Toluene (20 mL) was added to a mixture of (phen)PtMe₂ (19 mg, 0.22 mmol), B(C₆F₅)₃ (12 mg, 0.23 mmol), 4,4-bis(*t*-butyldimethylsiloxymethyl)-1,6-heptadiyne (135 mg, 0.36 mmol) at 0 °C and heated at 110 °C for 2 h to form 3-methylene-4-(triethylsilylmethylene)-1,1-bis-(*t*-butyldimethylsilyloxymethyl)-cyclopentane (S6) as an 8:1 mixture of E/Z isomers (Scheme S1). (Chromatographic separation of S6 from disilylated

impurites was unsuccessful due to the low polarity of **S6**). The solution was cooled to 0 °C and treated with 4-phenyl-[1,2,4]triazole-3,5-dione (70 mg, 0.40 mmol) and stirred at room temperature for 30 min. The solvent was evaporated and the residue was chromatographed (SiO₂; hexane–EtOAc = 50:1 \rightarrow 12:1) to give **S5** (171 mg, 72%) as a white solid. ¹H NMR (400 MHz): δ 7.53-7.51 (m, 2 H), 7.45 (t, J = 7.6 Hz, 2 H), 7.34 (t, J = 7.2 Hz, 1 H), 4.35 (s, 1 H), 4.18 (bd, J = 15.6 Hz, 1 H), 3.95 (bd, J = 15.6 Hz, 1 H), 3.44-3.59 (m, 4 H), 2.43 (bd, J = 15.6 Hz, 1 H), 2.17 (s, 2 H), 2.12 (t, J = 16.4 Hz, 1 H), 0.97 (t, J = 7.6 Hz, 9 H), 0.90 (s, 9 H), 0.88 (s, 9 H), 0.57-0.75 (m, 6 H), 0.05 (s, 6 H), 0.03 (s, 6 H). ¹³C{¹H} NMR: δ 154.3, 149.3, 131.8, 131.7, 129.3, 128.1, 125.5, 124.1, 66.0, 65.6, 49.6, 46.8, 46.7, 39.7, 38.7, 26.1, 18.5, 7.3, 3.1, –5.3. IR (neat, cm⁻¹): 2953, 2929, 2880, 2855, 1775, 1720, 1713, 1415, 1254. Anal. calcd (found) for C₃₅H₆₁N₃O₄Si: H, 9.15 (9.38); C, 62.54 (62.59); N, 6.25 (6.28).

Scheme S1

References

1) Lautens, M.; Smith, N. D.; Ostrovsky, D. J. Org. Chem. 1997, 62, 8970.